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Shock-Free Transonic Airfoil Design by a Hodograph Method

William Zeitler Strang, 2Lt, USAF. M.S. Thesis, University
of Vermont, 85 pp., 1984.

ABSTRACT

Refined mathematical methods are required for the ana-
lytical solution of the partial differential equation governing
steady, two-dimensional, compressible, transonic, potential
fluid flow. This equation is nonlinear in the physical plane
and so does not lend itself to standard analytical solution
methods. The Molenbroek-Chaplygin transformation, where the
physical Cartesian coordinates as the independent variables
are replaced by the velocity magnitude and direction as the
independent variables, linearizes the governing equation which
may then be analytically solved. The plane where the said
velocity parameters are the independent variables is termed
the hodograph plane. Likewise, the transformed differential
equation is known as the hodograph equation and it is solved
by hodograph methods.

This mathematical study addresses the solution of tran-
sonic flow phenomena by an extension of Lighthill's hodogranh
method. Lighthill's method transforms a given solution of
the Laplace equation into a solution of the hodograph equation
for subsonic flows only. A new relation is developed in this
study extending this transformation technique to include flows
up to Mach 2.2735 in air. Requiring only numerical data con-
cerning the velocity field, this hodograph method is compu-
tationally efficient and mathematically straightforward.

Primary Sources
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ABSTRACT

Refined mathematical methods are required for the analytical
solution of the partial differential equation governing steady, two-
dimensional, compresssible, transonic, potential fluid flow. This
equation is nonlinear in the physical plane and so does not submit
itself to standard analytical solution methods. The Molenbroek-
Chaplygin transformation, where the physical Cartesian coordinates as
the independent variables are replaced by the velocity magnitude and
direction as the independent variables, linearizes the governing
equation which may then be analytically solved. The plane where the
said velocity parameters are the independent variables is termed the
hodograph plane. Likewise, the transformed differential equation is
known as the hodograph equation and it is solved by hodograph methods.

This mathematical study addresses the solution of transonic flow
phenomena by an extension of Lighthill's hodograph method.

Lighthill's method transforms a given solution of the Laplace equation
into a solution of the hodograph equation for subsonic flows only. A
new relation is developed in this study extending this transformation
technique to include flows up to Mach 2.2735 in air. Requiring only
numerical data concerning the velocity field, this hodograph method is

computationally efficient and mathematically straightforward.
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List of Symbols Used

- -x, y cartesian coordinates in the physical plane

u, v velocity components in the x and y directions,
respectively

q, e velocity magnitude and angle, respectively

c local sonic velocity

Cp specific heat at constant pressure

y ratio specific heats

T temperature

R ideal gas constant

p pressure

p density

. .- ,

M Mach number

r circulation strength

B doublet strength

Z complex physical coordinate

complex velocity

complex velocity at the branch point of the hodograph plane

stream function

viii.

,'
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I pseii4ha-tcntatpesr
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potential function

complex potential function

°n Chaplygin functions

rm, Pm the mth residue and the mth pole, respectively

f(n,T.) normalization function

ST ratio of local speed to maximum attainable speed

-3 subsonic speed parameter

8, t supersonic speed parameters

0 value of subsonic speed parameter at the sonic speed

Subscripts and Superscripts

i denotes the incompressible case.

c denotes the case of flow about a circle.

s denotes sonic conditions.

o denotes stagnation conditions.

oo denotes free stream conditions.

*A variable as a subscript indicates the partial derivative with
respect to that variable.
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Chapter 1

INTRODUCTION

Problem Overview

The differential equation in terms of the potential

function, @ , governing the steady, two-dimensional, inviscid,

. irrotational, isentropic flow of an ideal gas is

.2 2 2

: 1 +[1- Y]Xj - ____
2 xx 2 v - 2 'x\" (1.1)

C C C

where the local speed of sound, c , is

c2 =c 2-(Y-1)/2 ( (1.2)

0..,
In terms of the stream function, p (1.1) and (1.2) are

002 2 2 2 1) 2 "
H_ P jo 2 - ,"y+2( 0 x v =0 (1 3)

o 2 xx 2 yy ( 2 xy- .,C C C
2 2 -1 2 2 2

" = 0o- 2(T ) Ox+"y) - (1.4)

For a derivation of the above results, consult Appendix A

and/or Shapiro. The non-linear behavior of differential equations

(1.1) and (1.3) is evident.

In the limit of vanishing compressibility, c'- and
'4.

.E.I



equations (1.1) and (1.3) reduce to the Lap-lace equations

xx+ = 0

IXX + 1P = 0.

The potential transform of Legendre and the Molenbroek-

Chaplygin transformataion linearize equations (1.1) and (1.3). This

study addresses the solution of the partial differential equation

resulting from the latter transformation.

Considering the physical Cartesian coordinates x and y

as functions of the potential and stream functions, one may deduce the

hodograph equations

-0 = q(po/p) OPq = q(po/pq)wo . (1.5)

Defining,

.t = (q/qm)
2

where qm is the maximum velocity attainable when all the flow's

internal energy is converted to kinetic energy, the governing

hodograph equation is

PQqrr+PQr)t- ,O = 0 (1.6)

•.. PQ 4T 4 2(1 -T)/ (1 -T/ Ts)  (1.7)

PQ - -4t[ I+(2-Y)/(Y-1)J/(1-T/T s ) (1.8)

Ts  (Y-1)/(Y+I) = Mach one. (1.9)

The above equations are derived in Appendix B.

The solution of equation (1.6) presents two distinct

difficulties. First, (1.6) is a partial differential of the mixed

type. Consider its discriminant:

B2 - 4AC = 0 -4(PQ)(-l) = 4PQ
,_- 4.

Lii

.. . . ..4. . . , .- . . . . . , . - - . - .. ,,, - . ., ,..-. ,-, .- ,',-, -, - - ,". - ',' - , , -.,

-..,-.a.. ._.''.... ....., ---...._ ..._ ., .., , -. .,_ ;,. , .,., '. _. . _ _ _ . ,, , , ., '}' , ',,. _ -,,, ,. _ .'--:-f,_ , .



In subsonic flow, 0<T< , the discriminant is negative and hence

equation (1.6) is elliptic. In supersonic flow, Ts<T<1 , the

discriminant is positive and (1.6) is now hyperbolic. This change in

behavior elaborates the solution method considerably. Second, the

Jacobian of the Molenbroek-Chaplygin transformation may be zero or

infinite at specific points or along lines in the hodograph plane.

The transformation is, therefore, no longer one-to-one. See Appendix

B and/or Ferrari and Tricomi 2 and Lighthill 3 for further remarks

concerning the Jacobian of the transformation.

Chaplygin, in 1904, solved equation (1.6). The solution, a

function of T, e , and arbitrary complex separation constant, n , is

%n(T,e)=Tn/2 F(anbn;n+1;T)e±ine . (1.10)

The hypergeometric function is denoted as F(anbn;n+l;T) and the
product Tn/ 2 F(an,bn;n+1 ;T) is termed the Chaplygin function. The

reader is referred to Appendix B for the derivations and details of

- (1.10). Bergman 4 noted that any particular solution (1.10)

corresponding to a particular n will generally converge in only
part of the hodograph plane and that the complete solution for the

entire hodograph plane is

(,e)=Im{ 00n(To)J (1.11)

n=o

Appendix C and/or Boerstoel 5 should be consulted for details of the

hodograph plane.

In light of Bergman's result and of the fact that all

boundary conditions are lost under the Molenbroek-Chaplygin

a..,

. .Q ,+. , , + . . ' ' .-.. " " ' ' . . . '+''""+" -+-. ' ." .•• " '" . . "-""""""""i -'- .- ,,.-.



Utransformation, Lighthill3 posed

' (-e)=Im{ [1Pn(T) f(n, T) e- n (1.12)
n=o

- as a solution to equation (1.6). The normalizing function, f(n, T.),

is chosen such that (1.12) tends towards a solution of the Laplace

equation in the limit of vanishing compressibility. This Laplace

solution, in effect, represents the boundary conditions. Lighthill

developed a method where a solution to the Laplace equation, given in

terms of the hodograph variables q and 6 , is transformed into a

solution of the hodograph equation (1.6). For subsonic flow, the

transformation is especially elegant, requiring only numerical data

concerning the incompressible velocity field. Supersonic flow regions

require a Laurent series expansion representation of the Laplace

solutions in terms of q and 8 . Nieuwland6 generalized the

representation to include Mellin-Barnes integrals. Both

representations require highly advanced mathematics to properly

represent only the simplest of Laplace solutions in the hodograph

plane. In fact, the Laplace solution governing the incompressible

flow about a general lifting airfoil cannot be represented by either

method. The trailing-edge closure problems experienced by all who

employ the hodograph method are symptomatic of this fact.

The key to this dichotomous behavior of the transformation

- lies in Lighthill's asymptotic forms of the Chaplygin functions as

S
.nl--- . Because equation (1.6) is elliptic for 0< <Ts  and

hyperbolic for Ts<T<l , different asymptotic formulae are required in

,.S2,..,¢;,,..,.,-,'.-r.v ...-..-.-. , - v ;--vv -'-',.",..-',.,., ';: ; ;:. .> ;;. ) X ? :



each region. While the assumptions behind Lighthill's subsonic

asymptotic formula are physically sensible, those behind his

supersonic asymptotic formulae are not.

Objective

A physically reasonable asymptotic form of the Chaplygin

" functions as Inj- -- o and valid for (Y-1)/(Y+1)<T<.508 3 in air is

developed. A transformation, entirely analogous to Lighthill's is

derived where only numerical data concerning the incompressible

velocity field are required. This permits the transformation of far

more complicated and physically realistic Laplace solutions (hereafter

termed "model flows"), than was previously possible. In particular,

incompressible flows about closed lifting profiles can be transformed

to represent transonic compressible flows about affinely related

profiles. Lastly, a numerical method is developed which calculates

the required data about any given profile.

- _
*5 aj.° "

*74,

-aP

*5Y" . . . . . . ... .
V' .',," ",<k' r "' -. ''- . ''':. . ..-. <...,"",.. -,':'""-';.L'.-' ,-,h ",",' ". -}, ,..- ',. ,. . .. .. '.

0* i" n *" ' ' " ' . . n " " " " " " ' - ' -,° - ' '



Chapter 2

LITERATURE SURVEY

In 1890, the Dutch mathematician Molenbroek linearized the

governing equations of motion by considering the potential and stream

functions as functions of the velocity coordinates.

Chaplygin in 1904 derived the solution to the most studied

version of the linearized partial differential equation. In this

method the strema function is represented by an infinite series of

particular solutions each of which converges in part of the domain of

S $ . ..the flow. The series representing the strema function is the product

of a hypergeometric series and a velocity magnitude parameter.

Manipulation of such functions requires rather advanced mathematics.

* - Chaplygin noted that by specifying

, ,/8)

the equation of motion reduces to the Laplace equation. This amounts

-'.

to specifying a fictitious gas with Y

Meyer in 1908 found a "lost solution" which is the expansion

of a flow around a corner.

0 .eaizd.ha Chaplygin'sn sugg esie hstion =-1amt tmos replaing

Demtchenko and Busemann in 1932 and 1937, respectively,

reCali oed that b yi suesin o mutst elcn

6

....,.

.-, *h'~ the~ eqato of motio redue tothLplceeqato. This amounts *. . *
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the curve of the ideal gas isentrope in the p vs. 1/p plane by a

straight line. They limited themselves to considering this straight

line as a tangent to the true isentrope at stagnation conditions.

This restricted their work to flows of Mach number less than about .3.

Von Karman and Tsien extended the above method by taking the

tangency point to coincide with free stream conditions. This shifted

the range of usefulness to higher subsonic Mach numbers.

Tsien in 1939 appears to be the first to consider

transforming solutions of Laplace's equation to solutions of the mixed

*equation. He derived a relation between a line element in the complex

physical plane and the compressible complex potential. His last step

is the replacement of the compressible complex potential by that

corresponding to the incompressible case. Thus, a transformation from

the incompressible physical plane to the compressible plane via the

-. hodograph was achieved.

* Ringleb in 19141 found another which is the flow about a

sharp edge.

In 1946 and 1947, Tomotika and Tamada 7 developed an

approximation to the ideal gas isentrope. Their "isentrope" coincides

with the ideal gas isentrope precisely at the sonic point and to the

order of their tangents at the stagnation point. The resulting

partial differential equation for the stream function in the hodograph

is easily solved. The solution is the product of Bessel functions and

trigonometric functions. They calculated a shock-free transonic flow

about a certain airfoil-like obstacle without circulation.

.
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Nocilla in 1954-6 used the Tomotika-Tamada gas to calculate

the shock-free transonic flow about airfoils with blunt noses.

Circulation is again absent.

There are numerous examples of researchers approximating the

true ideal gas isentrope by another curve rendering the solution

easier to manipulate than the Chaplygin functions. One of them, the

Tricomi equation replaces the ideal gas isentrope with a straight line

and the regular solutions are Airy functions.

Bergman 4 in 1945 appears to be the first to successfully

treat the exact case. The method is based on linear integral

operations and is quite complex. Furthermore, circulation is still

not included.

Cherry8 in 1947 solved the exact equation resulting not from

the Molenbroek-Chaplygin transformation but from the Legendre

potential transformation. In this transformation correspondence

between the physical plane and the hodograph ismore direct than in the

Molenbroek-Chaplygin transformation, but the unknown quantities lack

the physical basis of the stream and potential functions present in

the Molenbroek-Chaplygin transformation. Cherry calculated the non-

.- circulatory flow about a circular cylinder.

Lighthill 3 in 1947 is the first to solve the exact equation

resulting from the Molenbroek-Chaplygin transformation. He first

developed the asymptotic formulae for the Chaplygin functions as the

magnitude of the complex separation constant tends towards infinity.

For subsonic flow only, Lighthill built an entire function in theClobil
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complex plane of the separation constant. This entire function is

composed of two terms which turn out to be equal to one another by

consideration of poles, residues, the maximum modulus theorem.

Lastly, Lighthill developed the compressible stream function through

a transformation of the incompressible complex potential.

That this method even exists is due to the form and
,.%

simplicity of the subsonic asymptotic formula for the Chaplygin

N, functions. Lighthill showed that if a general Laurent series for the
V.-

incompressible flow exists in the hodograph and is convergent at the

sonic speed, then the equation for the compressible stream function in

" subsonic flow may be analytically continued into the supersonic region
*-%-

of the hodograph plane. Such a Laurent series representing the

incompressible complex potential about a practical airfoil in the

e./. hodograph plane will be very difficult if not impossible to derive and

manipulate.

In Lighthill's transformation technique, a normalizing

function is introduced that forces the solution of the mixed governing

equation to reduce to solutions of Laplace's equation in the limit of

vanishing compressibility. Lighthill's method can treat flows with

circulation via the requirement that as one encircles the airfoil in

Vthe hodograph plane, all transformed variables remain single-valued.

This limits the choice of the normalizing function to one particular

example which Lighthill found.
L 4'

Nieuwland6 in 1967 showed that Mellin-Barnes integral

representations of the incompressible complex potential are valid, and

A."'... ....
.4 . "''" ,...,..f '"o , '- ''',''* . . .,'" " -"', . . ..- " ' " ' , .," " ". .."• - " . ." " , . .

• ' ' . . . ,"
" ' . . ." ' ' "
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preferred, alternatives to the Laurent series representations.

Nieuwland employed the Mellin-Barnes integrals to properly model

considerably more complicated flows than could be handed by a Laurent

series. He calculated the flow about a family of quasi-elliptical

airfoils with circulation.

Bauer, Gorabedian, and Korn 9 in 1972 solved the transonic

flow problem by rewriting the two basic governing equations in a

complex form. These two equations are then decoupled into a system of

linear ordinary differential equations which they solve by finite

* differences. Bauer et al. show they can compute a wide variety of

advanced airfoils.

Boerstoel5 in 1977 further extended the method of Nieuwland.

He used the incompressible complex potential Nieuwland employed to

generate a "basic stream function" which possessed the required

• -- 

singularities and basic properties of the incompressible complex

potential about any general airfoil. To the basic stream function,

Boerstoel added the "additional stream function" which also satisfied

the governing equation and represented the complex incompressible

potential about a non-lifting circular cylinder. An assumed arbitrary

airfoil image in the hodograph plane permits solution of the

additional stream function by a Tricomi boundary value problem

treatment such thatthe sum of the basic and additional stream

functions yields the pre-chosen airfoil image. Boerstoel's method

produces realistic airfoils.

%..*

., Borte 5
' 97frhreteddtemto fNewad
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Takanaski in 1971 and ShigemiI 0 in 1981 constructed airfoils

similar to Nieuwland's using his technique. Shigemi introduced the

'YC"1 profile to cope with the problem of trailing edge closure which

plagued Nieuwland, Bauer et al., Takanaski, and Boerstoel. Shigemi

%%... correctly reasoned that the problem lies in the model flow, which is

transformed. The "YC" profile does not solve the problem. It is,

however, an extremely valuable advance. With relative ease, the

transonic flow about a wide variety of cambered lifting airfoils is

calculated. These airfoils are similar to Joukowski airfoils.

5%

.t
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Chapter 3

ASYMPTOTIC FORMULA DEVELOPMENT

Lighthill's incompressible flow to subsonic compressible

flow transformation depends upon two facts. First, any solution of

the hodograph equation (1.6) must, in the limit of vanishing

compressibility, reduce to a solution of the Laplace equation in

hodograph variables. Second, the maximum value of a function analytic

and not constant in a domain occurs on the boundary of that domain by

the maximum modulus theorem.

-. Consider the first point. For strictly subsonic flow, the

characteristic equation (see Appendix D) is

/d=(-pQ)-112 (3.1)

.tI which when integrated yields:
= y+ _ h-i/(yl)(y+l)r + .- i1 '(y-I')-(y+I)iS = G + tann +/ (-tan h -(-

Vy-1 a (1-T) -1)(l-) (3.2)

where o is an arbitrary constant. The hodograph equation for

strictly subsonic flow Is

ss+ e4e=T(s) s (3.3)

where

T(s)=~(P~l2 2 (yl (1) 2(I- +l 3/2

12

.key'.
*1 ..4 , , " " " eS)' . Z l -

-' " ° 
" "( 4
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Thus, s and T are both analytic functions of T in the domain

T<T s . Since the derivative of s with respect to T is not zero in

the domain, T is an analytic function of s by the inversion

theorem. Since T s or 1 in said domain, T is also analytic

function of s . For very small T , the Chaplygin functions behave

as .n/2 Because the Chaplygin functions comprise at least part of

the compressible flow solution, the functional form of T with

respect to s is needed so that the compressible solution can be

forced to the Laplace solution in the limit of vanishing

compressibility. Lighthill 3 chose the value of o to be that value

which causes "T to be asymptotically e2 s as T--o0 and s--- , a

is that value of s at -T (y- )/(Y 1), the sonic speed; . ."

That value of a is

1- y-l1
iZn2(lI- i tanh- yi-ii

= 2nl2(y-1)1--V/y_
1 -/ y+l; = -1.173 for =1.4.

Details of the derivation are in Appendix D.

. Lemma 1 (Lighthill 3 ). Both r and T are analytic functions of e2 s

in the region le2 sl<e
20

Proof . . . e2T . . is an analytic function of T in any domain

excluding T=(Y-1)/(Y+I) and T=1; its derivative is not zero in such

a domain; and at neither of the singular points can le2 sI be less

than e2 ° 
. Hence, by the inversion theorem, T is an analytic

function of e2 s in the region le2 S1<e 2o . As -r is never 1 or (Y-

1)/(Y+I) is the region, T must also be analytic.

For strictly supersonic flow, the above incompressible

%-...
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boundary condition does not exist. Integrating the characteristic

"-'. equations of supersonic flow yields:

---+ .-1 (+1)c-Q(- ) -1 (+1) -(-1)
t-_ tanh -tan-Y -i-1 (3.6)

while the hodograph equation for purely supersonic flow is

:. ', i tt+S( t) t-- eq 37

where

1 2 2(,+1)/_2 -12/2C+ -,s(t)= 1(pQ)I/( p) ,:(-) I

Q (3.)

The value of e is that value such that T is asymptotically e±2tl

as T-(Y-)/(Y+I) . At a glance

E=1/2ZnIY-1/Y+1I ; E= -.8959 for Y = 1.4 . (3.9)

, Appendix D contains further details concerning the supersonic flow

equations where t = t1-E

Lemma 2. Both T and S are analytic functions e±2t in the domain

T s<T<1 .

Proof. By equation (3.6), e+2 t + .• is an analytic function

. of T in the domain s<T<1 . No singular points exist in this

domain and its derivative is not zero in the domain. By the

inversion theorem T is an analytic function of e 12 tl in said

domain. Because e2 €  is a constant, then T is also an analytic

function of e -2t Since S is an analytic function of T , it is

also an analytic function of e -2 t

Consider now the implications and requirements of the

.

. . . . . .. . . . . . . . . . . . . . . . . . . . .
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maximum modulus theorem. The Chaplygin functions are analytic with

respect to n except at n -2, -3, -4 where they have simple
"%.

poles.

Theorem 1 (Lighthill 3). If 0<T<, 4n(T) is an analytic function of

n except at n = -2, -3, -4, . . . where it has simple poles, its

residue at n = -m being -mCmpm(x) , where Cm . . . is positive and.mm

~ (2Trm)- le - 2 am as m--w

The sign, -,means "asymptotes to." Assume two functions defined on

the entire complex plane can be constructed which possess identical

poles and residues at those poles. Their difference will be an entire

function. The maximum value occurs at infinity by the maximum modulus

theorem. If this maximum value is zero, by the maximum and minimum

modulus theorems, the two functions are equal to each other on the

entire complex plane. Lighthill employed this fact in his

incompressible-to-compressible transformation where one of the two

functions is constructed of Chaplygin functions. The forms of the

Chaplygin functions as Inj--- , called asymptotic forms, are

required to ensure the maximum modulus is zero. The asymptotic forms

change as the flow changes from subsonic to supersonic.

Subsonic

Integrate T(s) to produce V(T)

-5

V(T) =(-P/Q)-/4=EXP{1/2 T((sl)dsl } (3.10)

Thus,

V(0)=1 ;dV(')/ds=TV/2 . (3.11)

oA '

0 ".
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Assuming

* (T)=ens(T)W (s) (3.12)

the hodograph equation for strictly subsonic flow (3.3) becomes

d2Wn/dS2+2ndWn/ds=[1/4T2(s)-1*/2dT(s)/ds]Wn (3.13)
n n

Lighthill determined that as InJ----P- and excluding the negative

integers, Wn (s) -i.

Theorem 2 (Lighthill 3 ). If 6>0 and 01 <o then Wn(s) 1I i.e.
an

n ts(T) uniformly for s: ol and for n in the whole complex

plane with circles of radius 6 around each negative integer

A excluded, as InI-

Consult Appendix D for the complete derivation of theorem 2.

Supersonic

For -t s <<1 , define:

t 2t
Sinc ~(T) , en , an constarteX / anayti funtn of3-and )

by~~~~~~ lem 2,s2o ms n(t hs

L( t) =1 dQT/t 1 e . (3.17)

t n6r

Notefro eqution (3.1) rne (3ten-16)Sbjcin quto

nn

(3.16 to t liea Erao of equtio (37 yields)

d L (t)/dt2 + 2fldLn (t)/dt

n n
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[1/4S 2 (t)+1/2 dS(t)/dt -2n 2] Ln(t) (3.18)

By lemma 2

1/4S2 (t)+1/2 dS(t)/dt = Z Sre 2r (3.19)

r=o

Substituting equations (3.17) and (3.19) into (3.18) yields:

- . 4r2 , 2rt 2  2rt 2rt 12 2rt

z-" 4r e +2 2rZ e = s e -n r

r=l nr r=l nr r=o r=o n,r

(3.20)

,. . 2t
Equating powers of e r

4r (n+r),, = 2 2n
n,r r-m n,m n,r (3.21)

.2
-.- 7 S 2. +(s -2n)) . (3.22)
m=o r-m n,m o n,r

Equating the e°  term yields So = 2n2 or 2. =0. Assuming 2Z

- 0 implies that any general 1n,r is a function of 1 Since

1 is not restricted in any way, S(t) is implied to be a function
n,1

of an arbitrary constant which is false. Thus, S o = 2n2 and

r-a1
4r(n+r)tn,r = E Sr-mzn,m (3.23)

m= o

This equation predicts the occurrence of poles at negative integral n

for n(t) as Zn,r becomes indeterminate at these points. At first

glance, the assumption of So = 2n2 would seem to imply S(t) = f(n)

S-which is false. However, the implication that the coefficients S

are functions of n does not guarantee that S(t) is a function of

n. Lighthill also must use this observation in his development of the

asymptotic formula of the Chaplygin functions for subsonic flow. By

lim Ln(t)e nl = ln(Ts) equation (3.16) predicts

. .t-.o

ON.Z
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e nE Zlnn T I(S) (3.24)

r= o

Thus,

Ln(t)enE (T E e 2rt (3.25)
r= a

By the triangle inequality,

Ln(t)ene -'n (T) s tn(tIs) E e~'r' (3.26)
r= 1

Assuming

e nt Q(.)Hn(t)enE (3.27)

results in equations similar to equations (3.27) through (3.26) with

t substituted by -t throughout. Thus, in general,

Wn (T) = SQ(T)enE:[Ln(t)ent+H n(t)e-nt] (3.28)

ILn(t)en,! - ~ h~(TS)I I~n('rs) e~t
r= 1

IH n(t)enE It~n(Ts)l I ~Py(Ts) E e . (3.29)

r= 1

Equations (3.26) and (3.29) can be investigated more thoroughly with

the following theorem.

Theorem 3 (Lighthill3). When larg ni 5 - 6

) (-1Y+1 kenn/ 6

where k = n B(1/3[r(2/3)] 12(2Y-1)/(2Y-2)(Y+1)-(Y+2)/(6y-6)

When larg (-n)15w-6 , however,

n(-1/+1)- keflb(-n)1/ 6 sin(rnr-IT/6)/sin(nT)

Equations (3.26) and (3.29) hold only when 12tIlIa! otherwise the



. - .....

right hand sides are greater than On(Ts). Thus for ItlIo/2I

enL n(t) = enEHn(t)--'O n(Ts) (3.30)

Theorem 4. For It1<1e/2I and excluding circles of radius 6 about

the negative integers,

n (T ) - keno~njI/6%(T)[ent+e-nt]X(n)

where Xn=1 when arg nI< n-6

Xn= sin(nn-ir/6)/sin(nr) when arg (-n)J I i-6 as In I.

The stipulation that ltIo/2l = .5867 corresponds to

T= .5083 and to a maximum Mach number of 2.2735 for Y = 1. 4.

%.4.

S ,

. 3-''.:.. . . .... ;..... .. .
4.... 
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Chapter 4

THE INCOMPRESSIBLE-TO-COMPRESSIBLE TRANSFORMATION

Transformation in the Hodograph Plane

The series representing each n (Tr) converges only in part

a4

of the hodograph plane. Bergman ,Bers and Gelbart, and Lighthill 3

thus assume the total compressible stream function can be constructed

from an infinite series of nT

.4..Y (~-n 41

n=o

Consider an incompressible complex potential )-

0"44")and define

d( -oo

dz u-i q qe (4.2)

(see Appendix C). If such a complex potential is analytic outside the

body, then in hodograph variables

(in n i= ~ c~ 1  (14-3)

andn=o n=o
n -inO3

()=Im c q. c e
n (4.4U)

.44. n=o

%'- f The similarity of equations (4.1) and (43) prompted Lighthill to

assume

,-.:,2.
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= m { __ (T)f(n,L )e- in(
n' n j(4.5)

n=o
where f(n,T) is called the normalizing function. Its primary duty

is to force equation (4.4) to show the same behavior as equation (4.5)

in the limit of vanishing compressibility.

In particular, for 0 < T < T Lighthill stipulated:

(a) f(n,T) is an analytic function of n except possibly at

certain real non-negative poles of each of which it has a

real residue.

(b) For large n f(n,T.) Ae-n= for some constant A.-. •- T -n / 2
(C) As T---o , f(n,T0 ) T. uniformly for all n at a

distance 6 from any pole of f(n,T.)

Condition (b) ensures parallel behavior between equations (4.5) and

(4.4) for large n and T = T . Equation (4.5) for large n and

o < T < T becomes:
= I C )in}IM C nV(T.)e(4. 6)

n=o
while equation (4.4) with q = 1 is

, .' '.@ i) c e -  i n O )

n (4.7)

Condition (c) ensures that equation (4.5) reduces to equation (4.4) as

-  In this case

nT n/2 [1 +O(T)]

and n(T)f(n, T) becomes (T/T)n/2 - (q/q.)n qn for q.

normalized to one.

Lighthill considered closed contours about the origin of

the complex n plane. For T < Ts , Lighthill postulated a function:

, .

n.

SI''
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One notes:

Ci) Because 0 o(T)f(o,Tc.)e 0 =f(o,T.) a removable

singularity exists at n = o

(ii) By theorem 2, for large n J 11 /n(At))-o as

InH

(iii) By condition (a) and theorem 1, the poles plP 2,P3,

of n (r)f(nT.) are real as are all the residues

rlr 1 3. .of n-1 Wn(T)f(nT,,)

Lighthill postulated another function:

J (n,T,T.) = M. ~~s2i n-p
One notes: m=1 m (4.10)

(iv) if E rmePmC5.-5) converges absolutely then J2is
m= 1

an analytic function of n except at the poles

PlIP 2,p3,

(v) As InI - and n remains a distance 6 away from

each pm J

(vi) At each pole pm the principal part of J2is the same

as that ofJ

Lighthill noted that the function J i is entire in the n plane
1

by observations (i), (iii), (iv), (vi). By observations (ii) and (v),

its maximum modulus approaches 0 as n

Thus: P
( (T )f(n,-r )e n~ s -f (o,T) r m eJ.1

*1n-p
M=l
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nn (s -s)

m=) n-P m (4.12)

and, as In-- yet remaining a distance 6 from each pm

AV(T) = f(o,-o) + rems- s).

m=l

Substitution of equation (4.12) into equation (4.5) yields

'Im[f(°T ) k n rme m n (n-Pm) -) i

nO fl (n. 1 '1)
- n=o M=1 n=o

, .:---(4.14)

The form of the left-most summation suggest s--e ie when

compared with equation (4.4). Thus
es - S0,ojie

f(o, )(i) + r e-iPm" ncnn-Pm-ldr

m=1

-. 0

nPmC€ 0 o (4.15)

nt-+ ncE n n-Pml

=ra f ( ° ' T mFj'P ) +  [r  e - i p m o
PmD() 41 )

noting do(i ) : Encnn-1 dg from equation (4.3) 0

Lighthill noted that gm = f(mT.,'o) " If the Pm is a pole of

n ' then rm = f('_pm ) by theorem 1. If the pm is a pole of

f(n,T.) then rm = f( pm). Thus

*6o

r rg e- iPm ,

m=l (4.17)

is independently a solution of the equation of motion as is the

',isi , ,' : / a' '--7 - , , - .:....- : ' . ., ... ' < i • . . .- " . " . . - " " . ". , . - -



remainder of equation (4.16), or
S -s

ee

f J f ~ ~ (OT) I Mi)~

hesucIpt foedeot+ re f t Prod:, ,

for ¢m~1t nuecnegne o eqaio4.41).Te8eato

Assuming Po = o , ro  f(o, ) t and taking the imaginary part of

equation (4.18), yields:
e

"= rm f qTIPm (_S irp (., M.. l°l)+C"S pm - W. 0

IeM=o q (4.1 9)

S.o

The subscript one denotes the variable of integration and Co qo 0

for pm 1 to ensure convergence of equation (4.18). The relation

es - s.- i  is the transformation from the incompressible flow plane

to the compressible flow plane. Thus q = es -  defines the speed

magnitude transformation while the flow angle o is invariant under

the transformation.

l Equation (4.14) transforms incompressible flow solutions to
4',compressible flow solutions via simple numerical integration if the

' details of the governing Laplace solutions are known numerically.

3. i .An equation similar to equation (4.19) is now derived for

supersonic flow. The procedure is exactly analogous to Lighthill's

subsonic case. Note also, no constraints exist on f (n, T.) with

- respect to r Thus, any f orm of f (n, T.) val1i d f or subsoni c fl1ow

is also valid for supersonic flow.

where

.-.
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Consider, for O(Itl<Io/21 ,t > 0

J7/ ( )f(n, )eff (0 1

(vii) A singularity of order 1/6 exists at n

(viii) By theorem 14 and condition (b) for t> 0 j, J31-PO as

I nj- while remaining a distance 6 from any pole pm

(ix) Observation (iii) holds.

Consider, for o(ItI<ja/2j t> o

4 /6e

J3( n' rt n)/ ( Znr (4.21)

m~o

Note:

(x) A singularity of order 1/6 exists at n 0

(xi) rm and pm each include an additional value of 0 at n

0.

(xiii) Observations (iv), (v), (vi) hold.

Thus J3J4is an entire function in the complex n plane whose

modulus tends to zero as lnI-.*- while avoiding the poles pm

Thus J and for 0<ItI<Io/21 t> 0

~(T)f(n,t.)=f(O ,T)e n(u+ts.)+njr e n-
Sm=o 

M (4.22)

and as fnl- --  while remaining a distance 6 from the

n 1 AD(r)=f (or +ea poeP

M"o (4.23)



Equations (4.22) and (4.23) -are exactly analogous to

equations (4.12) and (4.13). Thus, by inspection, the form of

equation (4.18) applicable to supersonic flow where t > 0 is,

e

Letting p0  0 ,ro f(o,T.) and taking the imaginary part of the
,+t-s

above gives e

'% M M

ri I -m-n 1 )d;, +COSP )
i . I (4.25)

where one denotes a variable of integration. If t < 0 ,then

substitute +t into equations (4.20), (4.21 ), and (4.23) and -t into

equations (4.20) and (4.24). However, the result is the same in

either case as -(-t) = + t . Equation (4.25) is therefore taken to be

•~~~ ~ +- z, e +t"'[

the supersonic analog to equation (4.19). Now, q e t and

is still invariant under the transformation.

Passage to the Physical Plane

Derivation of the coordinates of the physical plane x + iy

=z begins with the Molenbroek-Chaplygin transformation,

$ ~ ebv +iye

q tp p~3(11.26)

"bte ( 2 0 ) 1 ('4.28)
' " - " i sQ s u rt am i .
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0 (:4. "19)

Thus, q = 1/2T (4.30)
0

Recalling 1 q -T

q q q/qm* ... *(4.31)

Equation (4.28) becomes

T -1 / 2 e i . - ii.

z0= Q(-) e [,P+ (.-.32"<"( 4. 2 )

The values of' and PT are obtained from equations (4.19) and

(4.25) for subsonic flow and supersonic flow, respectively. However,

the only differeence between these two equations lies in the

relationship between q and -T . Equations (4.19) and (4.25) yield

exactly the same relationships when operated on by equation (4.32).

The remainder of this entire chapter is from Lighthill 3 with

the exception of the generations to include supersonic flows.

0ql (-snP m (0- l)d, +CoSP 1 "I
Iil=O0

+ + _i Yr q-Prmo
T 21 im .

m=o m~o

2r + rMPm qlPm-COspm(-)d 1  -sinPm(- Q 1 ) d ., 1 (4.

Redefine V(T), InjI/6'0 (t) as n(T) to permit the development of a9,
general passage to the physical plane, irrespective of flow character.

. .

'z' "..'" ... . ",£,j~ ",,'"* *." * . -. ". - ".' . - " '' ,,,, . _ ", . ... . , . ."* 
, .

. ..-* - * . '-*- .-. *. .. . . . .,* . . - .... .
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Note that rm qP = A:n() by equations (4.13) and (14.23) and ty

the incompressible-to-compressible speed magnitude relations. Next,

use the facts

(1 ) 1 ) 1

I "I ) ' (p 2 -)

=f -Pn -I ei'Pr( ... l(d:i)+ id.. i))+ i~ c + ipm(' 
) 

i i

" "iq- prn( (___ :__ ( ):. (i)) 1 ( ) . (f)

-i) 2( 1)

* J. ( I Ci i i )

] ':J '].......jt = jinm j- Li' -pm(i .. )(d. 1 i)-id: 1 i)+z; i, f+Pm( ... '(d. (i)+id.i))1

(d +e _ 2(P+ ). +

% .5., to reduce equation (4.33) to:% 1/2 ie p ) 1 Pm ( *L) 4i3
-Z=Q(- -) m i 1 (d -. l) i) (id )

2( pm+l) (dp-i$

to reduc ee ipm( .) ( 3(i)

1/ -p e (i)m

Z.Q +- E rPme ql PM (d';, -id )

T M=O i1 
2 (p M ) 1 '

+. e i m( - 1  (1 i ) (i) i

-... + e2(Pm>'l) (d ,' +id: I ) + e1 A (.'+ 7L[ )

2(p +1) 1 1

.V

I:.i.,-i- .-. - ....- ~~~................ -. -...... •......-........ .......- .-....
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-2(p W
M=O m 2 (i) (i) 2 (i) +)

" " + ' :'-i+-

r)q (+ -2r d +P((m

Noting p 0/p = 1 in incompressible flow,

.'.."m2(m )

-- I)

(.) ")()_i "  i ) M+ dt

ds dr 3nq

T. 3 n d -= d (q d 7d6

(4.37)

Also,

"iM: ((()i) . M M~ Ii Mi i

+ , )e dP= qlr (d:: )+id. )=qf , = 1 jqz (4.39)

Mi i Mi)i'd) 1M" (" I -- (i) 1( dz-:i]]! . .  .fd, : q e e (d,<i) id. )=qf d = q".39)

Let the iticompressible-to-compressible transformation be denoted ek

where k = s-s. subsonically and k O+t-s supersonically.

Equation (4.36) becomes,
r p e"

T 1/2 rP. ei (l- pm )
___

"'"'" m - -: ) (Pm- )f-Pm
" "z~ q(- -) Z (r' + m m _ _ _ _dz

.- .

r P i(l+Pm)

, mo m 2(+p m  -dz

da-) [ 'z" ir. 1(k~ kc2z

".''[,. . \"n d " 2 ( k  e -  /  2- n 2L "

021
-". % .•
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-pk ez e fdz

z mk .k iek 2

-2T f1 rm 2(p -I) 2 (p +,)fr. dz) + ()(14.140)

The first line of equation (14.140) corresponds to the first and third

terms of equation (4.36). The second line corresponds to the second

and fourth terms while the third line corresponds to the sixth term

and the last line corresponds to the last term.

Collecting the coefficients of Z yields Q(T./T)1 1 times

1 d(s,t) k 1A- kr+r P' e(lpm)k
A e+4_ ek7 ( m m)e

2 nl dT e T nA M= M. 2-Y 2 (1lpm) (.1

Redefine equations (4.12) and (4.22) as

.r-nk e (n-pm)k e (n-pm)k
\ n Tf(x =foc00) +n r n

m=l1JI~o-~ m n-p m=Om n-p M (.2

and equations (4.13) and (4.23) as,

AF, (T) f(o,T) + r e-Pmk r e pmk (14143)

where ro f(O,T,) and p0  0 .Equation (14.142) with n =1 is:

and
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Se (lPm) k d(s,t) (l-Pm) kd r e (4.45)
m=o I-P m=o

Using the above relations with equation (4.43), equation

(4.41) reduces to:

f(lt )((T)+ 2r))
2 ' 2T 1 (4.46)

Similarly, the coefficient of 2dz is Q(T./T) 1 /2

" "times

An d(s,t) - -k 1rAC'e r-P c(l + m)kM= rm e-2 ((lp 47)

Equation (4.47) reduces to

"-I- ) G,1(u1 +2 2
T - (  (4.48)

which, by the way of

-1/2 - 119_(T) =-i/2+(2y-2)-i (4.49)

further reduces to 1/2
T

(y-l)Q (4.50)

Finally, 1/21/"2f f (- f 2d o 1/2
Z=-r f(l,To)z - z +Q X (r'

V -."r p i ( l P m ) 0
mm .l-Pmd

z
.%.."+ -- ) 2 P - )

r p i (l+P+ 2, (r' -er p ]Pm g, 1.1

+ m M. e PM  
zm) + g(T) (4.51)

M=O m
The arbitrary function of T , g(r), is found to reduce to an

arbitrary constant upon operation under the counterpart to equation

(4.32), namely,

.' ' ' . , ' ' . - , - , - . -, - .- ' 4 " ; - : ' . - . . - - . . - ' . ' , ' . ' - -. " - --x ' - -. " - . " - . " - - - . " - - " - - . " - > - ' < " " " ' " - '
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T (i)
Z =Q()i2i ' i (i)• "- • 1.- ( PQ + 2 -  '

" Q(4.52)

This exercise is not followed. The reader is referred

to Boerstoel's5 concise treatment of the exercise.

Equation (4.51) was derived under the assumptions Pm* , -

1. By theorem 1 and condition (a), no pole exists at n = - 1

However, it is possible for f(n,T.) to have a pole at n - + 1 . A

new equation giving the correspondence between the hodograph plane and
S....

.. physical plane and valid for p. = 1 must be deduced. The process is

very similar to the one given above and the reader is referenced to

Lighthill 3 or Boerstoel 5 for the treatment.

Too 2,n,-1r 4-, 'nn-
1/2 1

T '(-If-n f 2- _-3 ) + ('( f n ) '_
2 4 ni~i

I ) dz -(r' + -) (flncdz+i'z) + Z (r'
(2 -2)Q 2 1 2T m=2  m

rmp ei(-Pm)) f r p i(l+Pm)Y
+2 2(P -1) -dz+ X (r'- m e +1) lPmdl

2 .m m=2 m 2- 2 (Pm -z] (4.53)

Normalization Functions

The actual form(s) of f(n,T.) must be found satisfying not

only conditions (a), (b), and (c) but also ensuring that

'. _ -m
k°p k

m= m (4.54)

converges absolutely. An obvious choise is

f(n = e-ns (4.55)K given by condition (b). Conditions (a) and (c) are also satisfied.

Because no poles exist, the convergence of equation (4.54) is
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determined by the rm due to the Pn(T)'S . By theorem 1,

convergence is assured if (o+s.-s)<O for subsonic flow and if (s.-

t)(O for the supersonic case. The subsonic case is always true. The

supersonic case is true beyond the range of validity of theroem 4 if

the free stream is subsonic. Because n 1 1 is not a pole, equation

(4.51) may be used for passage back to the physical plane.

Recall that the hodograph surface possesses a singularity at

= which corresponds to the free stream conditions. Thus, when

circulation is present, the integrals of to any power with the

variable of integration as Z will all suffer a fixed increase once

this free stream singularity is encircled.

Derivation of the normalization function for circulatory

flow depends on forcing the said integrals to remain one valued.

Consider equation (4.16) and note
d4(i) = dZ (4.56)

The integral in equation (4.16) becomes c 1-Pm dz . For near one,

C."l-Pm=l+(lPmwl+0-l

m - (4.57)

The integral dz is zero while the integral fdz is simply the... m Z zer

circulation, r Thus, the integral 1Pm dz suffers a fixed

increase of (1-pm)r as the free stream singularity is encircled.

Therefore, equation (4.16) and (4.25) increased by

-F Z (l-p )c sinpm )
%m1 m

4 . (4.58)

This sum can be zero only if the Pm'S are symmetrically placed about

' ."
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the origin in the n plane (except possibly pm = 1 which needs no

counterpart). Denoting these poles as pm, = -pm the residues must

satisfy

.-p
r' (4.59)

The residue of n n ()f(n,T) due to n(T) at n -m(for m>2)

is
.-° Cm~pm(t) f (-mt(,) (4.60)

By equation (4.59) that at n - m must be

(1 +m/1-m)Cmim( )f(-m,T ) (4.61)

so that the residue of f(n,t) at n = m is:

m(1 +m/1 -m)Cmf(-m, E) (4.62)

Lighthill next found the form of f(n,-r) which satisfies the

above as well as conditions (a), (b), and (c) through educated

guesses. It is: ,
f~nc )= -n *,'-n( c )

f(n,-r)= (1-n) (4.63)

A pole exists at n = 1 Equation (4.53) should also be

one valued with this form of f(n,T,) As the free stream

singularity is encircled, equation (4.53) increase by:

T 1/ /2rp (-))
1/2' i/2lf (-i,T, ompm e(l-Pm) :)

' Q$ (-/21)( + + +'. 2"Q() ~ ~ ) + [ I(r'+ mPm) e( ) 2 m 2
,'. '-'(¥-I)Q m=2 -

r m.p m 1(1+ P~d 1 1-+(r mm) eI-+Mm)O r "
m 2T 2 "+p ) 2(1 2- (4.64)

By equation (4.59) the summation may be recast as

* . . . ..... * . * . . . . ..j.~\ \\
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ro ie rmPm) i-P
m m[ + rme -m-) 2 14.65)

r=2 m 21 -2 m 2r

which is zero by the symmetry about n = 0 . Equation (4.53) is one-

valued only if
,r I  -2t 1/2

r' +0(4.66)
r 2 + (y-l)Q f(-l, = 0

By equation (4.63).

f(-)[()+2T .- (1 )T (4.67)

r l=-l -l(4.68)

r1= - 2(T)iT)+2r '_(T)] (4.69)

But

(T)= (y-1) {l)(lr)/ }/1/2 (4.70)

_( 12 (,_l){l_(lT)Y/-/y1 1/y-1, 1/2

) 2T (4.71)-,T

Substituting all of the above into equation (4.66) gives

and, ,-].(r )+2rw' Cr )= 21)Vi( ) I(r)

(-)1/- 1/2 ( )i/_-i 1/2
T - (4.72)

y-I y-i

Thus, equation (4.66) does indeed equal zero and one can

state conclusively that* p,- (r )+2t ' (r )
n co -n Co

f(n,1)=-n (4.73)

is a proper normalizing function for circulatory flows.

At the poles:

(i) n = -m(m-2,3,4,...), the residue of n-1n(T)f(n,T.) is

a.

'"' " '" "' '" """ " " " ;" " " " ' . . ..'." " ." ." . .' . ." " . . . ., " 7. -. ' ' ' ' ' ' ' ' ' ' ' ' '• ",." -" ..........................................................................".
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Cm ( •) E [ m(T  ) +2T I' m( T ) 1]( 1I+M) ( 4.74 )

(ii) n=m('m=2,3 , ...) ,the residue is

Cm m(T[m )2 '( /I (4.75)

(iii) n = 1 , the residue is

I ) [ - 1 ( T ) + 2 ' -T i) ]  ( 4 .7 6 )

Lighthill3 stated that equation (4.53) becomes

T (1-
Z=F(T,Y,)Z+ [( dZ+i Z- dZ

z+(Y-l)~M=- (I(-)M/ -  i

i (rn+1 -I-n

M m e (m+1) 'J

+- -( ) +( '()-u- (:)) _ dZ

M+1 2-'M-- ( J mi

dZ)} (4.77)

where

F(r,T.)=l+ (1-(i- )+ n'
2y 2

+(+ (l-x) (1-x) -y/y-1 dx]

0 2 0x (4.72)

0

Finally, by theorem 1, the convergence of equation (4.54) is

guaranteed if (2o-s+s.)<O for subsonic flow. This is never violated.

By theorem 4, convergence is secured if (0+sc-t)<O which is again

valid beyond the range of validity of theorem 4. Thus, the assumption

of convergence required in the transformation is valid under these two

The reader is again referred to Boerstoel who derives

-N....



several several other nornmalizing funct-ions. They are, however, less

* general than Lighthill's and are applicable to simplistic model flows

* only.



Chapter 5

CONSTRUCTION OF THE MODEL FLOW AND THE VELOCITY FIELD

Construction of the model f low, or a governing

incompressi bl1e compl1ex pot ent ialI, i s requ ired because L ight h ill'1s

transformation technique requires a detailed numerical knowledge of

the governing incompressible complex potential and the associated

velocity field.

The coordinates of the profile, Tyi 0 , to be

transformed are assumed to be known. Also, it is assumed that a

combination of doublets and clockwise vortices placed ina uniform

flow represent the profile. The strengths and positions of the

doublets and vortices are to be found through the knowledge of the

*given profile geometry. In what is to follow, it is assumed that the

doublet centers and vortex centers are by no means coincident.

Consider the complex Z-plane in which the doublet and

vortex centers are placed. See Figure 8. Assume a zjcoordinate

center is placed at the center of the i th singularity - be it a

doublet or a vortex. Then, at a general point P ,the incompressible

complex potential is:

38

"o.

| - .. **.%*.- . .- -

r.. . . . . .. . . . . . . . . . . . . . . . . . . . . ..5. -



7-7. *

39

/l

rl

j~z'-'7



4 (

~J.,() ~n B' M

-, i. =q+Z z 2--b~ b 1)(.1a=1l
Setting q.,= and normalizing the doublet and vortex strengths

yields:

(i) (i) (1)n B m

a= a l
a~l a b1(5.2)

Note that the jh singularity center coordinates are Z. = Rjeiei in the

th*Z-plane. The coordinates in the j Z-plane are zj rj elaJ Taking

the real and imaginary parts of the incompressible complex potential gives:

- i)n B cost M
W RcosO + Z a a

a=1 r a 2 -T = b b (5-3)

Mn B sin-t m
= =RsinQ- E ZF rr

a=1 r a 2.-, b=l b b(54

Noting:

Rsine rjsinej + rjsinctj

Rcose=r. cose. + r. cosci.

r 1 = R2+ R 2- 2RRicoOe)

One may write: n B (Rcos--- R cos ~
Mi a da d a

=RcosO + 2 2 _2 o(-'
a=1 R +(dR a) 2Rd Ra co(d a

1Mr l Rcos- ~Cosv~ 0(.
=1 VLvR+(5.5

2r Tivbb 2_ bO

M n B a( dR 11 in di- Rsin)
=Rsint + E 9

a1 R -R )--2R R cos(-a= (da da d

1m
+ 4 E "nR+ VR1 -RRbio,(- h (5.6)

b=L

W.



. .' .-- " ?. .° _. . . . .. .. _ • , . .. ,, . , : .... .-. , -, . , . . .. •-- -

where the subscripts d and v denote quantities due to doublets and

vortices, respectively.

Now Ba' dRa' dea, rb, vRb , and v b must be determined.

For n doublets and m vortices, there are 3(n+m) unknowns. Thus,

specifying 3(n+m) coorindate points (R,e) of the profile T(i) = 0

results in a system of (3n+m) nonlinear equations in 3(n+m)

unknowns. Such a system may be solved by a nonlinear counterpart of

the Gauss-Seidel iteration method.

If 3(n+m) coordinate points of = 0 are known, the

one may set up the following system:

0 = fI(X 1,X2, . . 3(n+m))

0 = f2 (XlX 2 , . X3(n+m))

0 = f3 (n+m)(XliX 2  , X3(n+m))

Letting:

X Xn be BI - Bn

Xn+1 3 X n+m be i"I

Xn+m+1 l X2n+m be dR -  dRn

X2nm+ - * X2(n+m) be vR vRm

X2(n+m)+1 X2(n+m) be do1 don

X3n+2m+ X3(n+m) be A vom

and letting superscripts k and k+1 denote successive iteration

9 '; 'B ;"''.- ' """ '.'" '2 ."""...,.' ""a" -,j ., "" "-",t ,b,"" '". " "".:_.;._ '
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steps, superscript k* denote the value after the kth step unlesc

the value of step k+1 is available, and subscript Z denote the

.th given coordinate point of (i) 0 The following iteration

equations result. See following pages.

There are two healthy advantages to this Causs-Seidel

iteration method. First, truncation and round-off errors do not

accumulate as they do in elimination methods. Each new value is, in a

sense, a new initial guess. Second, a relatively small amount of

memory is required. With N total unknown and N specified

coordinate points, only 2N memory locations are needed. Contrast

this to some elimination methods which require N2 memory locations.

However, due to the strongly non-linear nature of the

equations to be solved, one must carefully formulate an initial guess.

The following procedure is suggested:

1 1. Build a symmetrical profile with a thickness distribution

roughly equivalent to the desired non-symmetrical profile.

Thus, r j v R = vej dj = 0

2. Solve the first and third equations of the above iteration

equations subject to step 1. Make initial guesses:

B-0 B (Thickness at j)/n

dR Oi = (j/n) (chord length)

3. Change the symmetrical profile to a slightly non-symmetrical

one.

4. Use the Bj and dRj found by step 2 as an initial guess

5 -s-

<-7B.
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J-n

2+ +( Rk+212 cos( k

k*l k ~ dR si )
+1 z ~ BB.~in

~R+(o R CosR P os

a=l d a d a *~a

k .2( k" 2 .kL
Zn R+(R)-2R, RCos( -,

47 v b ,v b
b=I

(5.7)

xk+1 _ k+l -4-TR-i

2 b+ 2 k k

+2j k2 ~ I

2 k. 2 R k s( k

n R+( 2r R Cc( -

b=1

(5.8
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4.4

n+m+l-- 2n+m

f-i2 k 2 k k.. kl k+l RZ+(dR ) -2 R'R j cos("- -d

X aR sinZdCS~.z d J = k+L . ksin
-B. sin-

S "k+l

n k+l k* k

B ( sind4aR,sin-,ft d a d a2 + k 2 k*'
a 1 R+(dRa ) -2 R dRa cos( da

a7%

m

+ -Z R -2nRR+(vRb)2
2Rv bk("- k

6vhb Zbb
b=i

(5.9)

k+l _ k+l 2 k2 F2 47
S2R RCos)-R+EXP R sin-'

B 1.a da sind  R sin')

l Rm + 2 Ra2 112

"";--- ?n~( R b 2-2Rv RkCO,.-:.'-"4,, b R + v
v b b b

b #,

.J..

.s ,. . . . . . . . . . . . - -
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2n+2m+l R <3n+2n

R +(R -2R, R. Cs ,-lk~ rR+dR+ I d k IldOS(k+ dk+1 sin -Bk+1 k+ in

k+1
B. R~sin-

2 k+1 2 k+icoS(
R +(dR. -2RiRj co dj

B R+ + sin ~ R sin'
+a d a da Z

R2 +(Rk+1 2_2 R k+1 o( f.1*
a-i RZ+d a Zd 2Rda CO(~Z-d a)

aif

+1 k+1.In 2 k+1 2 k+1 k
4- EV nb " R +( R b ) -2R ZR b cos( 9 V blbil

3rn+ 2 m+l-Z-3 (n-F.)

k+1 l os 1 __ [R2 k+12 F-4 T r
z os 2  RV' [+(VR )-EXPL7iRsn

2 v R kj + Yn

n Bk+l( k+lsnk+

a d a d a R Sf

+ R+(d k+l2 kd+l kda

-1) 2R, R Cos(,, - k+)

m li
k+1 R2  Rk+l 2 k+1 k

L.j b . v Rb -2 RvRh Cos('-

b= I

(5.12
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along with

dj = v0 = 0

vR = (j/m) (chord length)

F ° = .01 sin(jiT/m)

5. Solve the above iteration equations subject to step 4.

6. Repeat steps 3 through 5 until the desired profile is

obtained.

During the initial design stages one is interested in

finding a rough profile with desirable flow characteristics. It is

economical, therefore, to specify fewer coordinate points in this

stage than in later stages where the precise profile is required. The

above procedure need only be employed in the initial stage, however.

-. -As one specifies more coordinate points, one will have to specify

additional initial guesses for additional doublets and vortices.

These additional initial guesses may be intelligently chosen by

interpolation of the final values yielded by the above procedure.

Leading and trailing edge closure will always be a problem

with a finite number of doublets and vortices. Luckily, the non-

closures may be reduced to negligible magnitudes by specifying closely

spaced coordinate points at the nose and tail of the profile. The

V -. - non-closure is thereby forced to fall between a particular pair of

arbitrarily close points.

. .. The angle of attack is easily found as the angle between the

chord line and the normal to the profile at the front stagnation

point.

,-" .. " 'a..
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The velocity field data are now at hand. Specification of

any two points in the field allows the calculation of AO(i) and

A (i) by equations (5.5) and (5.6). If the two points are

sufficiently close to each other, then

A (i)=dO(i)= udx + vdy (5.13)

A()=dO(i)= -vdx+udy (5.14)

Solution of equations (5.13) and (5.14) yields u and v By

q u2+v2 (5.15)

e = tan - I(v/u) (5.16)

The required data are known throughout the field.

Xs

J.2.

S%.
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Chapter 6

DISCUSSION

The hodograph method presented in Chapter 14 extends

Lighthill's transformation method, valid for subsonic flows only, to

transonic flows. The ability to treat supersonic regions springs from

theorem 14.

An underlying assumption in theorem 14 is that Tr is a

function of e±2  This assumption predicts that T and t vary

together, i.e. they both increase or they both decrease. Lighthill,

however, assumed -r to be a function of e±2 t in his development of

the asymptotic formulae of the Chaplygin functions for supersonic

flow. This assumption is physically insensible as it predicts T- is

*constant in supersonic flow. Hence, the ratio (q/q)2 s ostn

irrespective of t

Consulting Lighthill's3 work shows the form of theorem 14 is

similar to Llghthlll's analogous result. Both predict poles at

negative integral n as well as the oscillatory behavior of n([

along the positive real axis when T > T5 3 Both results predict that

48
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for large, positive, real n the zeroes of n(-) are given

approximately by the zeroes of the trigonometrical functions. Theorem

14, however, is far less complicated than Lighthill's analogous

formulae. From this simplicity rises the transformation technique

developed in this study which is markedly similar to Lighthill's

method but is able to treat transonic flows.

All the advantages of Lighthill's technique are possessed by

this newly developed method. In particular, any flow which can be

represented by potential and stream functions may be transformed

utilizing purely numerical data concerning the flow velocity magnitude

and direction. No longer must one be restricted to those flows which

can be represented as Laurent series expansions or Mellin-Barnes

integrals in the hodograph plane. The governing incompressible

-- complex potential about a general lifting profile is generally far too

* . complicated to be represented thusly and cannot be employed as an

incompressible boundary condition. The new method, however, is able

to transform such a boundary condition.

This method eliminates the closure problem experienced by

those who use such representations of the model flow in the hodograph

plane. Previous researchers using hodograph methods to solve the

compressible transonic flow about a profile have overlooked another

work due to Lighthill1 1. Lighthill addressed the problem of inverse

design and formulated three constraints which must be satisfied if the

inverse problem is to be well-posnd. They are:

,-.t . . - -A .--- I..
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where qo(w) is the prescribed speed distribution as a function of the

polar angle of the circle obtained from a conformal mapping of the

airfoil in question. Qualitatively, the first constraint states that

the pressure distribution over the airfoil and the free stream speed

cannot be specified independently of each other. The other two state

that the specified pressure distribution and the angle of attack may

not be independently specified and that the trailing edge close.

Trailing edge closure problems are, therefore, symptomatic of ill-

posed inverse problems. Those researchers using Laurent series

expansions and Mellin-Barnes integrals to represent their model flow

in the hodograph plane are specifying a pressure distribution around

some profile. They must arbitrarily assume a free stream speed to

begin their solution process. In so doing, they violate Lighthill's

first constraint and closure problems result. Given a closed profile

in incompressible flow, the new transformation method will transform

it into another closed profile.

The construction of a model flow about a closed lifting

profile is only theoretically possible by the method of Chapter 5. A

closed lifting profile can result only when the number of vortices is

infinite. Thus, in practice a small closure problem will exist over

some small interval at the trailing edge and/or the leading edge. By

specifying the coordinate points at the nose and trailing edge of the

given profile arbitrarily close together, the closure problem is

forced to fall over some arbitrarily small interval. Thus, the

L .
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closure problem can be reduced to effects which may be ignored for

engineering purposes.

Another possible drawback to the construction of the model

flow by the method presented in Chapter 5 lies with the initial guess

of the model flow. The stability of the numerical method is strongly

dependent upon this initial guess. However, if the procedure outlined

in Chapter 5 is followed, a reasonably accurate initial guess may be

constructed which should eliminate the stability problem.

The limiting maximum local Mach number of 2.2735 may be a

theoretical drawback, but not a practical one. The highest local Mach

number existing in shock-free flow about any airfoil this author has

seen is 1.42. This Mach number existed over two airfoils designed by

12Boerstoel

K".
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Chapter 7

CONCLUSION

M. James Lighthill in 1947 developed a method of solution of

the hodograph equation governing the subsonic flow around a body.

Employing the incompressible flow around a body as a boundary

condition, this method transforms the boundary condition into a

solution of the hodograph equation. Preventing such a transformation

in supersonic flow are the complicated and physically insensible

supersonic asymptotic formulae of the Chaplygin functions which

Lighthill developed.

This study developed a physical lyreasonable asymptotic

formula of the Chaplygin functions valid for supersonic flow up to

Mach 2.2735 in air. The new formula permits the development of a

method which transforms an incompressible boundary condition into a

solution of the hodograph equation governing both subsonic and

supersonic flow about a body. Any incompressible flow around a

profile that is governed by an incompressible complex potential may be

transformed into a solution representing the compressible, transonic,

P, e

° °



two-dimensional, potential flow about a similar profile. This

transformation is developed from, and is markedly similar to,

Lighthill's transformation.

Only numerical data concerning the flow velocity magnitude

- and direction around a given profile are required for the

transformation. Numerical methods required by this method are simple

and well behaved.
4.

53

* ...-



V.-?

.

RE FERENCES

1. Shapiro, A.H., The Dynamics and Thermodynamics of Compressible
Fluid Flow, Vol. I, New York: John Wiley and Sons, 1953.

2. Ferr.-ri, C. and Tricomi, F. G., Transonic Adrodynamics, Trans.
Raymond H. Cramer. New York: Academic Press, 1968.

3. Lighthill, M.J., The Hodograph Transformation in Trans-sonic
Flow. I. Symmetrical Charintls. II. Auxiliary Theorems on the
Hypergeometric Functions. III. Flow Round a Body. Proc. Royal
Soc., London. Vol. A191 (1947), pp. 323-369.

4. Krzywoblocki, M.Z., Bergman's Linear Integral Operator Method in

the Theory of Compressible Fluid Flow, Wein: Springer-Verlag,
1960.

5. Boerstoel, J.W., Design and Analysis of a Hodograph Method for
the Calculation of Supercritical Shock-Free Aerofoils, NLR-TR-

77046-u, April, 1977.

6. Nieuwland, G.Y., Transonic Potential Flow Around a Family of
Quasi-elliptical Aerofoil Sections, NLR-TR-T-172, July 1967.

.4

7. Tomotika, S. and Tamada, K., Studies on Two-Dimensional Flows of

a Compressible Fluid - Part III, Quart. Appl. Math., Vol. 9

8. Cherry, T.M., Flows of a Compressible Fluid about a Cylinder,
Proc. Royal Soc., London, Vol. A192 (1947), pp. 45-79.

10. Shigemi, T., A Contribution to the Hodograph Method for Shock-. Free Transonic Airfoil Sections, Trans. Japan Soc. Aeronaut.

Space Sc ., Vol. 24, No. 65 (1981), pp. 152-168.

11. Lighthill, M.J., A New Method of Two-Dimensional Aerodynamic
Design, R&M 2112, April 1945, Aeronautical Research Council,
London, England.

54

. '. . -,. *.*.v .- .- .--.. ,.'- . .- -. ;- ,



35,- I,.J

-4

12. Boerstoel, J.W., "A Transonic Theory for Aerofoil Design". In
Computational Methods and Problems in Aeronautical Fluid

Dynamics, pp. 327-353. Edited by B.L. Hewitt, C.R. Illingsworth,

R.C. Lock, K.W. Mangler, J.H. McDonnell, C. Richards, and F.
Walkden. New York: Academic Press, 1976.

13. Glauert, H., The Elements of Aerofoil and Airscrew Theory, New
York: The MacMillan Company, 1943.

I

op

.2..

.I



%*- •- -- -* *

A..

Appendix A

DERIVATION OF THE GOVERNING EQUATIONS

Any study in fluid dynamics must begin with the governing

equation(s) of motion. The governing equation is often derived under

certain assumptions which limit its use. These assumptions must be

"-" .known so that the governing equation(s) may not be incorrectly applied

to certain flows.

The following derivations parallel those of Schapiro

Beginning with the assumption of irrotational motion it is

easily shown that the integral

-q cosad (A.1)

A

is independent of path. Thus, q cosadt i3 an exact differential and

one may set:

do : q cosadZ (A.2)

where o is the velocity potential. Potential flow and irrotational

flow are often used interchangeably. Thus, for two-,iimensional flow

ox = Do/Ax = u A-3)

,y= v (A.)

*.7 -7,-'.
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where u and v are the velocity components in the x- and y-

directions, respectively, of a Cartesian coordinate systemn. Tne above

is summarized as5:

q=V~ (A.5)

F'or a steady two-dimensional flow, the continuity equation

becomes

Vu/x+ V(pv)/ Y 0 .(A.6)

Carrying out the indicated differentions yields

P(xxy + X)P/3x + ~y 3P3Y 0 (A.7)

Next, an equation is required relating p with the potential

function. Summing Euler's equations of motion along a streamline in

steady flow yields:

dp -- pd(q 12) .(A.8)

Expanding: 2 22

dp A m(U +V -Dd X ')(A9
2 ~2(A9

For isentropic flow, the sound velocity is

c= dp/dpls (A.10)

Substituting into the above

Likewise:

=-P/c
2(~. +P~y A'2

-- Substitution of the above into equation (A.7) yieldIS:
2 2

[-I -

C .2 XX C 
2 VY C (2 xv:.



The local sonic speed is derived from the energy equation for an

isentropic flow of an ideal gas. It is:

2 2 y -1 q2 =c2 -1-1
"" c =C - - q=-- (:--

o 2 o 2 x V

Note that the isentrope for an ideal gas is given by
%- --

pY constant (A.1::,)

from which one can see that specifying a straight Line isentrope in

the p vs. i/p plane amounts to specifying Y = -1

Equation (3) is the governing equation of the potential

function. Obviously non-linear, its solution is at best difficult

unless simplifications are made or it is somehow transformed to a

linear equation.

The stream function is now defined. The stream function,

exists only for the two-dimensional steady flows and is defined by:

o = = v -- -po/Px (A.16)

Substituting the above into equations (A.13) and (A.14) yields the

governing partial differential equation of the stream function:

2 2
2, - ] + 2 x ,

2 C- . +2 xy (A.17)

2 2 2 -2 +  2 2,5, c = c - 2 (7-) (. +7) (A.18)
o 2 x ( .•

The conservation of energy for the inentropic flow of an

ideal gas is

(1 2 + 2C T conotant (A. 19)
S -p

For an ideal gas

S%.

. -. ' " °.
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C T =(C /YR) YRT = (/Y-I)c 2
. (A.20)

p p

Combining these two equations and evaluating the constant at three

reference conditions (zero speed, zero temperature, and sonic speed)

yields:

=q
2  (A.22)

(y+1/y-1) a2  (Y+i/Y-1) q2  (A.23)

Equations (A.21) and (A.22) may be recast as

2 p (A.24)

y-I 2 -l

(2/1 p0/P 0 =qM
2  (A.25)

by noting c2 
=Yp/p for isentropic flow. Solving equation (A.214)

for q and employing the isentrope relation yields the De Saint

Venant and Wantzel formula:

q 2 = q [1(.6

The f inal required relation is found by substituting the above into

equation (A.21) yielding:
2 2 2 q

2 - -l 2 2 (.7

.73



Appendix B

The Molenbroek-Chaplygin Transformation

In equations (A.13) and (A.17) the independent variables are

the Cartesian coordinates (x,y). By considering these coordinates as

functions of the polar velocity coordinates (q,O) the governing

equations may be linearized. This is the Molenbroek-Chaplygin

transformation.

The following derivations follow those of Boerstoe 5 and

Ferrari and Tricomi2 .

It follows from the definitions of the stream and potential

a, ., functions that their total derivations may be related thusly:

d +i (po /p)dtd=udx+vdy+i (udy-vdx)

=(u-iv) (dx+idy)=qe-iodz (3.1)

Thus:

dz=e1 O/q[dO+i(pop)d4] (B.2)

Dz/3q=eiO/q[q +i( (o/p).q] B3)
az/3O--e O/q[ o i (po / p )4 6 ]1.

When x and y are considered as continuously differentiable

functions of q and 0 , their mixed partial derivatives exist and

'60
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the order or differentiation is immaterial. Hence

{ei'/q[p +i(Po/p) ]}

={eie[¢0+i(po/p) 6]}q B.5

yielding:

iei/q[l +i(Po/p) q Iqq

-e ie/q2  e+ie'9(P0/pq) q (B.6)

Equating the real and imaginary parts yields:

8=q(po/P)4)q (B.7)

¢q=q(po/pq)q . (B.8)

We define

T=(q/qm )2 B.9)

Subtracting equation (A.20) from equation (A.26) yields:

po/P=(lT)-I/ - (B. 10)

Equations (B.7) and (B.8) can now be expressed in terms of T

* Noting

dT/dq= 2q/qm2 (B.11)

we obtain:

-"'-0=2(q/qm ) 2 ( Pc/p) T (B. 12)

0=2TO- T )  (B.13)

(B.14)

Q=2T(1-T) - I /Y -  B.15)

Likewise:

_T 
= (p c )/ p q )  O (B.16)

O 'Yr mq q d- , - (: l

A * ~~:~.:. ~~ ~*.*o. d .l-. . -. -l . - . . . . . - -..

"..q 3/ T(po/pq)=(Y-1)- 1I-T)-Y/'Y-I-I/2-[(I-T) - I / Y - I  (P.19)

-q0
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= -1/2T(1-)YIY-1 [1-T-(2T/Y-1)] (B.19)

- 1/2T(I-T)Y/-I [ I-r(Y+I/Y-I) ] (B.20)

From equation (A.20)

q2/2 + c2 /Y-1 - qm2/2

we see when q = c

Ts = (c/qm) 2 
- Y-I/Y+I (B.21)

Hence:

O = (B.22)

P= -2T(I-T) Y / Y  - / / s )  (B.23)

Cross-differentiating equations (B.14) and B.22) to eliminate the

potential functions yields:

PQW+PQ TW- 9WO (B.24)

This is the linear, governing mixed partial differential equation of

motion in the hodograph plane in terms of the stream function. The

discriminant of the above is:

B2-4AC=O-4(PQ) (-1)=4PQ (B.25)

The coefficient PQ is negative when T< s . Thus, equation (B.24)

is elliptic for subsonic flow. Likewise, PQ is positive when T>T s

and equation (B.24) is hyperbolic for supersonic flow. The mixed

behavior is evident.

The variables T and e are separated by

V(T 8)= n(T)e~
in e

yielding:

PQnT+PQTnT+n2Wn=O (B.26)

ubtiun )=n/2Fn+_Substituting Pn(T)T F (T) into equation (B.26) yields:
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PQF"+FPQ(n/.T2)+PQ IF'n. T f

+[PQ(n/2)(n/2-I)T- +PQ(n/2T)+n 2 1Fr=0 (B. 27)

where the prime denotes differentiation with respect to T

Substituting:

PQ= (.9

into equation (B.27), collecting and cancelling terms, yields:

nn

+n(n~l)/2(Y-1) F n(-[) =0 (B.29)

Comparison with the hypergeonetric equation of which the

Gaussian hypergeometric functions are solutions shows Fn(-0 is a

Gaussian hypergeometric function. In this case:

a nbn =-n(n+l)/2(Y-1) (B. 30)

an+bn n-(l/Y-1) (B.31)

n n+1 .(3.32)

Solving for an bn yields:

an bn=1 /2En-1 /Y-1 ±( (Y+1)n 2 1Y-1 -(i1Y-1)
2)11 2  (B.33)

where, by convention, an > b n The Gaussian hypergeometric

functions, found by the Method of Frobenlus about Tr 0 (other

regular singular points are 1, ),are:

F(a,b;c;i) = I+(ab/c)T+a(a+1 )b~b+1 )/2!c(c+l1 )2

+(a(a+ ) (a+2) (b) (b+ ) (b+2)/3! c(c+1 )(c+2) 3

The Chaplygin functions, qn (T) a re defineti as:

pn (T)= n[?F(anobnn+1 ;T) (B-35)
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Correspondence between the hodograph and physical planes is

one-to-n when the Jacobian of the transformation is not zero or

-% inf inite.

J = (x,y)/ (q,e)

= ~ (B-36)

From equations (B.3) and (B.14), and noting Z=x+iy ,the Jacobian is

seen to be

J 2 i/q 2 (P/P[ .0 O (B-37)

Substituting equations (B.7) and (B.8) into the above yields:

J = e2ie/q(p0 /p)[(P 0 /pqYO 6
2 (P0 /P) pq2](.

Noting:

= _p0/pq 2-p /Opc
2

= P0 /p( 1/1c 2 _1 /q 2 ) (B.39)

equation (B.38) becomes:

J = eP18 /q(p /p) 2 [(1/c 2 _1/q2 )p2_lP~] (B.140)

J = -e2 iD/q3(p 0 /p
2 )[q2 Pq 2 _(M2 _1 )q 0

2] (B.141)

-'For a one-to-one correspondence between the hodograph and physical

planes, we must have:

q2 p2 (M2-1) 2,~ 2B42
q* o; qPq P0 *, 12

When the Jacobian is infinite, branch points or branch lines

*occur. Branch-points exist in subsonic flow and branch lines exist in

supersonic flow. An obvious branch point is the stagnation point

where q = o . Ferrari and TricomiV, show that no singularity arises

* in the fluid flow at branch line images for supe)rsonic flow.
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Limit lines occur when the Jacobian is zero. In subsonic

flows, the Jacobian could be zero at the stagnation point or at a

point of infinite curvature. Supersonic flows, however, can have

lines where the Jacobian is zero. The equations defining these lines

are:

q q = 0 (B.43)

qt q +J 1P~~ o (B. 1 1)

A theorem due to von Karman states that in the hodograph

plane the limit lines are the loci of points of tangency of the stream

lines with the characteristics of the governing equation. The slope

of a characteristic in this case is:

de/dT = -B±,/B2-4AC /2A = _ I/ /PQ (B.45)

See Figure 2.

A qualitative discussion will help the visualization of

limit lines. Because the Jacobian is zero, a finite length in the

hodograph plane is mapped to zero length in the physical plane. Thus,

the physical plane could be considered to be folded at the image of a

limit line. Although the velocity will be a smooth function about

the limit line in the hodograph, it will be discontinuous in the

physical plane at the limit line image. The presence of a limit line

predicts a shock in the physical flow.

j

"T'
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Appendix C

THE HODOGRAPH PLANE FOR
A TYPICAL LIFTING AIRFOIL

'. "%:]

The nature of the hodograph plane depicting the 'low about a

typical lifting airfoil will be illuminated by three exa mples.

Non-Lifting Circular Cylinder in Incompressible Flow

Consider first the complex potential, i)=()+ ()

of an incompressible uniform f low about a circle. With the circle

radius and free stream velocity normal iz ,d, this potential is

z- + ZcC

and

d(()/dzc u-iv = qe1 9 = lZc c2  C)

Defining Cc = qee and substituting into the above yields:

zc = ±[(1_Cc )-12(C;

1112 + (1-C)1 1 2 1

Thus, ~cmust be defined on -i two-shoeted Rir-mann rfc

for an unequivocal one-to-one correspondence to exist. :hnhtit

exist when

d~c/dZ(,0 'O,

Pf. th d i

. . ..
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d =/~c 2Z (C. 6)

Possible branch points exist when Zc = o and when Zmc
This point, not in the external flow, is therefore of no interest.

When Z= , = 1 and one is at the force stream conditions.

The branch cut extends from c = 1 to infinity along the real axis.

Note also that Cc  1 is a singular point of equations (C.3) and

,-,.(c.4).

Consider the stream function about the circle. It will

obviously be antisymmetric with respect to the axis of flow. Let's

look, therefore, at the flow above the axis of symmetry. The front

stagnation point maps to the point (o , 7/2) on the hodograph. At the

point of greatest cross-section presented to the flow, the flow angle

is zero while the flow magnitude is a maximum. Beyond this point, the

flow angle becomes negative and the magnitude decreases until at the

rear stagnation point the velocity is zero again while the flow angle

is -Tr/2 . See Figure 3.

Lifting Circular Cylinder in Incompressible Flow

Consider next the same situation with circulation. The

complex potential for the incompressible flow is now:

,() = Zc + "c if/2i ZnZ, (C.7)

and
d ( i)/dZC - + ir" -1

u-iv = - - ? iP,;?ir (.,

We see the hodog7riph plano is again two sheeted. FindinR

the possible branch points:
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p. 7h

d d- 2/7 .,3 - 7p/21

T h US:

d C/d--. = 0 at Z C IC1D

dC /dZ 0  0 at X C.

dC /dZ0  at Z =a C 12)

The corresponding points in the hodograph plane are, respectively:

C= (C.12

The point Zc o is again of no practical intore-st. F rcm

equation (C.8), one sees that 1 can b2 rroscher fro to v c-e

of Zc namely:

z (C. 161

=c -2Tri/P (C.17)

Therefore, the point C = 1 cannot be the branch point. Indeced, the

value of C corresponding to the free stream conditions (7 0 , is

a singular point again and must not be defined on the sheet containing

the regular point Zc 2iii/P One is lo ft with

C= 1 - (r/4T)r (C .1

as the last possibility. Substituting this into oquation (C" q) nhov'.'

that C*can be reached from one and only on.- oi ot in t h'~oh"i

plane. Thus, C* is the brnch poinat and the brnn tnu:ac'

* the real axis out to infinity.

Q uaIi t a t ivey,th yi~1Fla
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p lane is similar to the non-circulatory case. Here, however, ti-

stream function is not antisymmetric with respect to the flow axis

the maximun velocity magnitude over the top half of the cylindpr i

greater than that obtained over the lower half. See Figure ~

Lifting Airfoil in Compressible Flow

Consider a lifting airfoil. The incompressible =pmle

potent ial may be conf ormall Iy mapped from an incompressitle fla

representing that aboatf a circle. This general -ap*Ig

Z ~+a 0  . ... (C.11i

where the coefficients, a , are generally complex. Now:

-,()/j (d, ( i)/d' )(dZ/) c c(dZ/dZ,)1 C?

Equaton (C20) bcome1

1 =+f/i z 1 a(-2al 4~ + -3rC.L

Coqaing equa)tieos:(.)ad(.~)sostelfigaro

Cegminning atutibrnch poi) n (2)sostelfiw

mdn ainfinity. The Print, -crs pnndi nF to the f st-ai
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conditions, =1 , is still a singular point.

The hodograph plane still has the same basic structure in.

eorn;ressible flow as it did in incompreCsible flow. For low speds

one may use small perturbation theory to linearize the governing

equation, (A.13). The result is:

2 2  + -- 0

Through Gothert's Rule and the Prandtl-Glauert Similarity Rules, one

can predict that the compressible complex potential is the same as tha

incompressible case for affinely related airfoils. However, the

previous result is for a perfectly general airfoil in incompressible

flow. Thus, the same result will hold for any general airfoil

affinely related to this general airfoil. In particular, the point C

= is still a singular point and the hodograph is still two-sheeted.

See Figure 5.

41
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Appe-ndix D

INTRODUCTORY RELATIONS REQURED !I
ASYMPTOTIC FORMULAE DERIVATION'S

Recall the characteristic equations of equation (1.6):

do/dT =±(PQ)-/ (D. 1)

Consider f irst the case where dO/dT is real, i.e. supersoni flIow.

- Then,

dO/dT=± 1/2T((T/T -1)Ml -T) )11 2  (D.2)
s

d0/dT =±12((+)-Y1](-)Y1)
1  (D.3)

* Hence:
t pT

do ±]((Y+)T-(Y-l )/(1-T)(Y-1 )) 112 dT/2T (D.4
f Y-1 /Y+1

- {+l -l (1 i-QI -1 (+L) --. 5
tan _tan (1- (D(-5)

See Figure 6 for a piot of t versus T .The gover ning equation

(1.6) for strictly supersonic flow becom es

PQ[2 ]tT+k ~I+PQ~ tt-% =0 (D.6)

t2=(PC)-' (D.7)T

or

S~t)=PO[T (Q 3 2 PQ+Q )]+PQ (±(PQ) 1 ) (D.1D)

* 75

......................... . . . . . . . ...... . . . . .



'4 76

V -.

::Dc

4-1-

dI



77

S(t)=±I/2(PQ)-I/ (PQ -P Q) (D.11)

T T-- S(t)=±I/2(Q T/Q-P T/P)

=±2(Y+1)/(Y-1)2"T 2( 1-T)-l/12( (Y+I/¥-I -1) - 3 /2  (D.12)

In subsonic flow, P < 0 and the characteristics are

imaginary. One may write:

ide/dT- = ±i(PQ) 1/ ( -PQ)-'/, (D.13)

Because the characteristics are imaginary and do not physically exist,

Lighthill 3 is valid in redefining the characteristic equation as

de/dI = (-pQ)-1/ 2  (D.It)

Thus:

,. . de i (((Y+1)T-(Y+',))/(l-T)(Y-1)) 112 /2 T( . 5de= dr/21 (D.15)

Integrating,
1 !+1/4' tanh- '(-)-(.+I)- -] (-)(+1)-

S tanh-tainh

where o is an arbitrary constant yet to be determined. For strictly

subsonic flow, the governing equation (1.6) becomes:

-ss + ="" T(s)P s  (D.17)

T(s)=- 1/2(-pQ)122[QT /Q-P T/P]

'"'- :"=2(Y+l) ( - ) T2( - ) /2I - 1 (Y+1 /Y-1) )/)-3/2 (D. 18)

Lighthill- defines to be that value which causes T to

be asymptotically e -s as t-rC, and S-- - Symtolically, this is

represented as - e

This exponential form is particularly well suited to a

series solution of equation (D.17) which will yield the important

asymptotic formula for the Chaplygin functions for subsonic flow. The

°. : .,, .k : .,.-. ., ... ....-. -. . - ... , ... .- -".-... ,...-- . .. -.. ....-..-. .. . . ..v .. ..- . ..-..-. .. --. . .... . . -... - .. -. ..
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2spoint T = 0, s= -= ,at which T e ,represents the

incompressible limit. The behavior of any solution to compressible

flow - which will include n(T)'s - must reduce to the solutions of

the Laplace equation in the incompressible limit. This requires

thorough knowledge of the behavior of T as T--o becomes ,n (-) is

a function t This matching of the compressible solutions to the

incompressible solutions is the basis of Lighthill's transformation

method. Thus,

t=EXP { 2(+_- tanh- ( )() -tanh-1 (-)-+)

(D.19) ,

By the identity tanh 1 (x) 1 1/2 Znfl+x/1-xI , x2 < 1 , we have:

2,j l-x l+x' <-1I= • +x) I---x ' )  (D.20)

_- - ' _ -- , _ -i)_ -_)(D.21)

Thus,

1 1+1+1

2/ - - -'- n (D.22)

0= }n -- tanh- +-(- (D. 23)

As - oo

=_ t -i -i +. -+)-( +1),,-[ 2 V ± (,-l)(1-:) (D.24)

The second and third terms approach -+ and +, , respectively.

Using the binomial expansion and neglecting terms of second order and

higher in T , one deduces:,:4

0i

. j4 P .'s* '.. .. *-*-, .", , d, ... ,. .' .: .. , . :/ .'; .-.. .' .. '.., '- '/" , -2. -: ','. _ . .4' 2'2 .,. '
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+tanh _______ 2 i
2-2 (D 2)

Neglecting the T term yields: (I

1/2 ZnI2(Y-1)1 (D.26 )

Finally:

For air, 'Y = 1.4~ o = -1.173 .See Figure 7 for the plot of s

versus T Note that s- o as -r- . See Figure 8 for t-e

plots of T('s) and +S(t) versus Tr

Theorem 1 (Lighthill 3 ) If 0 < T 1 P(T) i s a n

analytic function of n except at n =-2,-3,-4,. w h we re i t '.as7'

simple poles, its residue at n =-m being -mCm p(T) ,where Cm is

positive and -(2itm) -1e-2am as m

For any m

d.Cm = r(am)F(l+m-bm)/r(a -m)7(1-b )(m!) 2  (D.2S)

where thie values of amP bm are those values previously defined for

the hypergeometric function, equation (B.33)

Lighthill 3 also deduced:

=o 1 (D.29)

=j 
1 1 +(2y-2 -1 (D-31)

Theorem 2 (Lighthil11 3 ) If 6 > o and 01 <o then Wn(s)---) e

' e) enV(r) , uniformly for s < 01 , and for n in the whole

complex plane with circles of radius 6 round each negative integer

excluded as n
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Lighthill 3 develops the.;r- m 2 by rssu~irr a form of

amenable to a series solution of the covernin;: equa ion of sib.:Gori

flow, equation (D.17).

First integrate equation (D.1%)

" i' /2ZnlP/Ql VI- -T Sl~ s D.2

1/2Znf-P/Qj = T(sl)ds.

(piQ)/2= EXP fT(sj)ds1 } jD.

Define,

V(T) = (p/Q) EXP1/2 T(si)ds,

where the additional factor of 1/2 is needed in the series solution of

equation (D.17). Thus,

V(o) =1 (D.

dV(-r)/ds 1/2T(s)V(t) (D.37)

Lighthill 3 assumes

"n(T) = ensv(T)Wn(S) (D.35)

Note that en s = Tn12 and thus V(i)Wn(a) must represent F(an, bn;

n+1; T) Because n(T) ens ,V() are all analytic functions of T

in the given domain (-tto , TS, , then Wn(s) must also be an analytic

function of , and hence of e" s  Also, when =o, F(an,

bn; n+1- T) 1 Because V(o)= I so too must Wn(--) 1 Th:s

implies

,n"(.) .d ,r  -....

r=o

-U.

- - - - - - - - :,. ,
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Subjecting equation (D.38) to the linear operatcr of equaticn (D.1'

yields:

dW n(s)/ds 2 n ,n (S),Ids =

[1/4T2(s)-1/2 T(s)/ds]i WntS)

Were it not for the factor of 1/2 in the definition of V , extra

terms of nT(s)4n (s) and T s)dWn (s)/ds appear, rende-inc the

following solution impossible.

Lighthill 3 next states that, by lemma 1,

1/4 T-(s)-1/2dT(s)/ds= E t re2 rS for l2SeKe2 °  (D.42"
r=2

Equation (D.41) becomes:

"2rs 2rs 2r5 < r

r=l nr 4r-e +2 d 2re r2 c d r CD. 4R

Matching powers of e shows that d n,1 o and
r-2

4r(n+r)dn,r= E tr-mdn, m  r (D.1W)
m=o

The remainder of this appendix is strictly from Lighthil1 3. Uow let

oI o2 ,o03 be any numbers satisfying 01 <o03< . Thon

Z tre o03 D. 5)
r=2

converges, so its terms are boundod and one can ,rite tr<A2 3.

Lemma 3. If m>o , and InI > AC/ , wher-, CeC(30%< - . , and

n is restricted to lie at ai distance >5 from any nnritive interor

(where o < 6 < 1), then

Idnm! ,,A/5n)e'2 . CD. Snj,

n,..

7.



Proo.: A

.rr-

-2r--3J .rr ( +r) Ae + I] D-

Now 4r(n+r)l> I n I S f or when I r'>i~~ If n/1

Irl<in/?I it is > 41n/21 Hence,

d ~\ L+

if' In >AC/6 Hence the result is true an h i'"a olws

.K

It is deduced that, for s - ur. r '-2 o r .. trI. i ' 2 - t

l emma 3,

n . -fl-nrie

< A/61j iii/1 (o 0

and thus Wn (s)-*1 and theorem 2 results. One wc Jowl ant

that the sum after N terms, S,, of the sn.',-

ar n

n=o

Is>SN o( 1 - / (1 -r)

when fol lowing L ighthi ll's a Do vep, nrc1 1- . Not C) 1 n 'ki

form of "Jr(n r) For n -r ie ,1 : ' -

indeterminat1. How v, Cr)rh 1,11 T ) al e te '3 i r ... v "r '

integers (xcept n -1) and t eh tii 1, i i n 'x - 11

6* <

"; t s d du e ha , Fr 1 n er t re t':? ~ s ,
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